SEMIPRIME RING WITH SYMMETRIC SKEW 3-REVERSE DERIVATION

Dr. C. Jaya Subba Reddy

Department of Mathematics, S.V.University, Tirupati-517502, AndhraPradesh,India. cjsreddysvu@gmail.com

V.Vijay kumar

Department of Mathematics, S.V.University, Tirupati-517502, AndhraPradesh,India. Email: maslina@ukm.edu.my

S.MallikarjunaRao

Department of Mathematics, S.V.University, Tirupati-517502, AndhraPradesh,India. s.mallikarjunarao123@gmail.com

Article Info ABSTRACT

Article history:

Received Aug. 8^{th} , 2015 Revised Sept. $20th$, 2015 Accepted Oct. 5^{th} , 2015

Keyword:

Semi prime ring, Reverse Derivation, Symmetric Skew 3- derivation, Symmetric Skew 3 reverse derivation andAnti automorphism.

In this paper we introduce the notion of symmetric skew 3- reverse derivation of semi prime ring and we consider \vec{R} be a non commutative 3-torsion free semi prime ring \overline{J} be a non zero two sided ideal of \mathbf{R}, α be an anti automorphism of \mathbf{R} , and $D: R \times R \times R \rightarrow R$ be a symmetric skew 3-reverse derivation associated with the anti automorphism α , suppose that $[\tau(y), \alpha(y)] \in Z$ for all $y \in I$, then $[\tau(y), \alpha(y)] = 0$ for all $y \in I$.

> *Copyright © 2015 Transactions on Mathematics All rights reserved.*

Corresponding Author: **Dr. C. Jaya Subba Reddy** Department of Mathematics, S.V.University, Tirupati-517502, AndhraPradesh,India. Email: cjsreddysvu@gmail.com

1. Introduction

Bresar and Vukman[2] have introduced the notion of a reverse derivations and Samman and Alyamani[5] have studied some properties of semi prime rings with reverse derivations. AjadaFosner[1] have introduced the notation of symmetric skew 3- derivation of prime or semi prime rings and proved that under certain conditions a prime ring with a nonzero symmetric skew 3-derivation has to be commutative.The study of centralizing and commuting mappings on prime rings was initiated by the result of Posner [4] which states that the existence of a nonzero centralizing derivation on a prime ring implies that the ring has to be commutative. Vukman [6,7] investigated symmetric bi derivation on prime and semi prime rings in connection with centralizing mappings. C.JayaSubba Reddy[3] have studied prime ring with symmetric skew 3-reverse derivation. In this paper we proved that under certain conditions a semi prime ring with a nonzero symmetric skew 3-reverse derivation has to be commutative.

2. Preliminaries:

Throughout the paper, R will represent a ring with a center Z and α an anti automorphismof R. Let $n \ge 2$ be an integer. A ring R is said to be n-torsion free if for $x \in R$, $nx = 0$ implies $x = 0$. For all $x, y \in R$ the symbol $[x, y]$ will denote the commutator $xy - yx$. Recall that a ring R is semi prime if $xRx = 0$ implies that $x = 0$. An additive map $d: R \to R$ is called derivation if $d(xy) = d(x)y + xd(y)$, for all $x, y \in R$. An additive map $d: R \to R$ is called reverse derivation if $d(xy) = d(y)x + yd(x)$, for all $x, y \in R$ and it is called a skew derivation (α -derivation) of R associated with the automorphism or anti automorphism α if $d(xy) = d(x)y + a(x)d(y)$ for all $x, y \in R$, and it is called a skew reverse derivation (α – reverse derivation) of R associated with auto morphism or anti automorphism α if $d(xy) = xd(y) + \alpha(y)d(x)$ for all $x, y \in R$.

Before starting our main theorem, let us gives some basic definitions and well known results which we will need in our further investigation.

Let \overline{D} be a symmetric 3- additive map of \overline{R} , then obviously $D(-x,y,z) = -D(x,y,z)$, for all $x, y, z \in R(1)$ Namely, for all $y, z \in R$, the map $D(., y, z): R \to R$ is an endomorphism of the additive group of R. The map $\tau: R \to R$ defined by $\tau(x) = D(x, x, x)$, $x \in R$ is called trace of D. Note that τ is not additive on R. But for all $x, y \in R$, we have $\tau(y + x) = \tau(y) + \tau(x) + 3D(y, x, x) + 3D(x, y, y)$ Recall also that by (1) , τ is odd function More precisely, for all $x, y, z, u, v, w \in R$, we have $D(xu, y, z) = xD(u, y, z) + a(u)D(x, y, z),$ $D(x, yv, z) = yD(x, v, z) + \alpha(v)D(x, y, z),$ $D(x, y, zw) = zD(u, y, w) + \alpha(w)D(x, y, z).$

Of course, if D is symmetric, then the above three relations are equivalent to each other. To prove the main theorem, first we prove the following lemma:

Lemma: Let R be a prime ring and $a, b \in R$. If $[y, b]a = 0$, for all $y \in R$, then either $a = 0$ or $b \in Z$. **Proof:** We know that $[xv,b]a=0$ $x[y, b]a + [x, b]ya = 0$ $[x, b]$ va = 0for all x, $y \in R$. Thus $[x, b]Ra = 0, x \in R$ and since R is prime, either $a = 0$ or $b \in Z$.

3. Main Result

Theorem 1: Let \vec{R} be a noncommutative 3-torsion free semiprime ring, \vec{l} be a nonzero twosided ideal of \overline{R} , α be an antiautomorphismof \overline{R} , and $\overline{D}: \overline{R} \times \overline{R} \times \overline{R} \to \overline{R}$ be a symmetric skew 3reverse derivation associated with the anti automorphism α . Suppose that the trace function τ is commuting on I and $[\tau(y), \alpha(y)] \in Z$ for all $y \in I$. Then $[\tau(y), \alpha(y)] = 0$ for all $y \in I$.

Proof: Given that $[\tau(y), \alpha(y)] \in Z$ for all $y \in I(1)$ By the linearizing (1), we get $[\tau(y + x), \alpha (y + x)] \in Z$ $[(\tau(y) + \tau(x) + 3D(y, x, x) + 3D(x, y, y)), \alpha(y) + \alpha(x)] \in Z$ $[\tau(y), \alpha(x)] + [\tau(x), \alpha(y)] + [3D(y, x, x), \alpha(y)] + [3D(y, x, x), \alpha(x)] +$ $[3D(x, y, y), \alpha(y)] + [3D(x, y, y), \alpha(x)] \in Z.$ (2)

Replace y by $-y$ in (2) we get $-[\tau(y), \alpha(x)] - [\tau(x), \alpha(y)] + [\frac{3D(y, x, x), \alpha(y)] - [\frac{3D(y, x, x), \alpha(x)] - [\frac{3D(y, x, x)}{2D(y, x, x)}]$ $[3D(x, y, y), \alpha(y)] + [3D(x, y, y), \alpha(x)] \in Z.$ (3)

Now adding equation (2) $\&$ (3), we get $[D(y, x, x), \alpha(y)] + [D(x, y, y), \alpha(x)] \in \mathbb{Z}$ for all $x, y \in I$. (4) Replacing y by $(y + x)$ in equation (4) and using (1) and (4), we get $[D(y + x, x, x), a(y + x)] + [D(x, y + x, y + x), a(x)] \in Z$ $[D(y, x, x), \alpha(y)] + [D(y, x, x), \alpha(x)] + [\tau(x), \alpha(y)] + [\tau(x), \alpha(x)] + [D(x, y, y), \alpha(x)]$ + $[D(x,y,x), \alpha(x)]$ + $[D(x,x,y), \alpha(x)]$ + $[\tau(x), \alpha(x)] \in Z$ $[\tau(x), \alpha(y)] + 3[D(y, x, x), \alpha(x)] \in \mathbb{Z}$ for all $x, y \in I$. (5)

Substituting y by yx in equation (5), we obtain $[\tau(x), \alpha(yx)] + 3[D(yx, x, x), \alpha(x)] \in Z$ $[T(x), \alpha(x)\alpha(y)] + 3[(yD(x, x, x) + \alpha(x)D(y, x, x)), \alpha(x)] \in Z$ $[\tau(x), \alpha(x)]\alpha(y) + \alpha(x)[\tau(x), \alpha(y)] + 3[\tau(x) + \alpha(x)D(y, x, x)]$, $\alpha(x) \in Z$ $a(x)([\tau(x), a(y)] + 3[D(y, x, x), a(x)]) + (a(y) + 3y)[\tau(x), a(x)] + 3[y, a(x)]\tau(x) \in Z$

Therefore,

$$
0 = [\alpha(x)([\tau(x), \alpha(y)] + 3[D(y, x, x), \alpha(x)]), \alpha(x)] + [(\alpha(y) + 3y)[\tau(x), \alpha(x)], \alpha(x)] + 3[[y, \alpha(x)][\tau(x), \alpha(x)]
$$

\n
$$
[(\alpha(y) + 6y), \alpha(x)][\tau(x), \alpha(x)] + 3[[y, \alpha(x)], \alpha(x)]\tau(x) = 0 \text{for all } x, y \in I.
$$

\nReplacing y by $[\tau(x), \alpha(x)]\tau(x)$, we obtain
\n
$$
0 = [\alpha([\tau(x), \alpha(x)]\tau(x)) + 6[\tau(x), \alpha(x)]\tau(x)]
$$
, $\alpha(x)] [\tau(x), \alpha(x)]$
\n
$$
+ 3[[[\tau(x), \alpha(x)]\tau(x), \alpha(x)], \alpha(x)]\tau(x)
$$

\n
$$
0 = ([\alpha(\tau(x)), \alpha[\tau(x), \alpha(x)], \alpha(x)] + 6[[\tau(x), \alpha(x)][\tau(x), \alpha(x)]][\tau(x), \alpha(x)]
$$

\n
$$
+ 3[[\tau(x), \alpha(x)][\tau(x), \alpha(x)], \alpha(x)]\tau(x) + [[\tau(x), \alpha(x)], \alpha(x)]\tau(x)
$$

\n
$$
0 = [\alpha(\tau(x)), \alpha(x)]\alpha([\tau(x), \alpha(x))][\tau(x), \alpha(x)] + 6[\tau(x), \alpha(x)]^3
$$

Since τ is commuting on I , we have $2[\tau(x), \alpha(x)]^3 = 0$, for all $x \in I$. It follows that

 $(2[\tau(x), \alpha(x)]^2)R(2[\tau(x), \alpha(x)]^2) = 0$ Since \overline{R} is semiprime, we have $2[\tau(x), \alpha(x)]^2 = 0$, for all $x \in I(6)$ On the other hand, taking $y = x^2$ in equation (5), we get $[\tau(x), \alpha(x^2)] + 3[D(x^2, x, x), \alpha(x)] \in Z$. $[\tau(x), \alpha(x), \alpha(x)] + 3[\left(xD(x, x, x) + \alpha(x)D(x, x, x)\right), \alpha(x)] \in \mathbb{Z}.$ $2\alpha(x)[\tau(x),\alpha(x)] + 3[\tau(\tau(x)) + \alpha(x)\tau(x),\alpha(x)]\in Z.$ $5\alpha(x)[\tau(x),\alpha(x)] + 3x[\tau(x),\alpha(x)] + 3[x,\alpha(x)]\tau(x) \in Z.$

Therefore,

 $0 = [\tau(x), 5\alpha(x)[\tau(x), \alpha(x)] + 3x[\tau(x), \alpha(x)] + 3[x, \alpha(x)]\tau(x)]$ $0 = 5[\tau(x), \alpha(x)]^2 + 3[\tau(x),x][\tau(x), \alpha(x)] + 3[\tau(x), [\tau, \alpha(x)]]\tau(x)$ $0 = 5[\tau(x), \alpha(x)]^2 + 3[\tau(x), x][\tau(x), \alpha(x)] + 3[\tau(x), [x\alpha(x) - \alpha(x)x]]\tau(x)$ $0 = 5[\tau(x), \alpha(x)]^2 + 3[\tau(x), x][\tau(x), \alpha(x)] + 3[x[\tau(x), \alpha(x)] - [\tau(x), \alpha(x)]x]\tau(x)$ $0 = 5[\tau(x), \alpha(x)]^2$.

Since τ is commuting on I , we get $5[\tau(x), \alpha(x)]^2 = 0$, for all $x \in I(7)$ Comparing equation (6) and equation (7), we get $3[\tau(x), \alpha(x)]^2 = 0$, for all $x \in I$. This implies $[\tau(x), \alpha(x)]^2 = 0$, for all xel. Note that zero is the only nilpotent element in the center of a semiprime ring. Thus $[\tau(x), \alpha(x)] = 0$, for all $x \in I$. This completes the proof.

Corollary 1: Let \vec{R} be a 3!- torsion free prime ring, \vec{l} be a nonzero two-sided ideal of \vec{R} , and α be an anti automorphism of \overline{R} . Suppose that there exists a nonzero symmetric skew 3- reverse derivation $D: R \times R \times R \to R$ associated with the antiautomorphism α such that the trace function τ is commuting on I and $[\tau(y), \alpha(y)] \in Z$ for all $y \in I$. Then R is commutative.

Proof: Suppose that R is not commutative. Then, according to Theorem 1, $[\tau(y), \alpha(y)] = 0$ for all $x \in I$ and, by [3, Theorem 1], $D = 0$, a contradiction.

References:

- [1] AjdaFosner: Prime and Semiprime rings withsymmetric skew 3-derivations, Aequat. Math.87(2014), 191-200.
- [2] Bresar. M. andVukman.J: On some additive mappings in rings with involution, Aequationes Math. 38(1989),178-185.
- [3] Jaya Subba Reddy .C: Prime ring with symmetric skew 3-revers derivation, International Journal of Mathematics and Computer Applications Research,Vol.4, Issue 6, Dec(2014),69-74.
- [4] Posner, E.C.: Derivations in prime rings. Proc . Am. Math.Soc.8,(1957),1093-1100).
- [5] Samman. M. and Alyamani.N,: Derivations and reverse derivations in semi prime rings, International Mathematical Forum, 2 (2007), No.39,1895-1902.
- [6] Vukman, J.: Symmetric bi-derivations on prime and semi –prime rings,Aequationes Math.38, (1989),245-254.
- [7] Vukman, J.: Two results concerning symmetric bi- derivations on prime rings. Aequationes Math.40,(1990),181-189.